On essential self-adjointness for Schrödinger operators with wildly oscillating potentials
نویسندگان
چکیده
منابع مشابه
Schrödinger operators with oscillating potentials ∗
Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.
متن کاملOn the Essential Self-Adjointness of Anti-Commutative Operators
In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.
متن کاملOscillating wildly
ome cells can induce the production of their own protective blanket. The signal comes from active neurons in the central nervous system (CNS), and triggers the differentiation of oligodendrocyte precursor cells (OPCs)—thus yielding the cells that cover the neurons with a protective sheath of myelin. Now, Beth Stevens, Douglas Fields, and colleagues (National Institutes of Health, Bethesda, MD) ...
متن کاملSchrödinger Operators with Singular Potentials †
We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials
متن کاملEssential self - adjointness
1. Cautionary example 2. Criterion for essential self-adjointness 3. Examples of essentially self-adjoint operators 4. Appendix: Friedrichs' canonical self-adjoint extensions 5. The following has been well understood for 70-120 years, or longer, naturally not in contemporary terminology. The differential operator T = d 2 dx 2 on L 2 [a, b] or L 2 (R) is a prototypical natural unbounded operator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1978
ISSN: 0022-247X
DOI: 10.1016/0022-247x(78)90254-8